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Direction of shear 
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Abstract--The direction of the maximum shear stress on any plane can be determined graphically from the 
traction vector. The orientation and magnitude of this vector are found from a fundamental property o f  
symmetric tensors of second rank. Exactly the same method can be used to find the direction of the shear strain 
associated with any line. 

INTRODUCTION PROCEDURE 

LISLE (1989), Means (1989) and De Paor (1990, this 
issue) describe methods for determining the direction of 
the maximum shear stress on a generally-oriented plane. 
There is yet another way which has some important 
conceptual and practical advantages. Elements of this 
method are scattered in a number of places in the 
engineering literature, for example, Jaeger & Cook 
(1979, pp. 30-32). The treatment by Goodman (1963) is 
perhaps the most complete, but it is unnecessarily com- 
plicated and there are a number of misprints in both text 
and illustrations. 

The fundamental relationship between the com- 
ponents of the traction vector T (also called the stress 
vector) and the components of the unit vector n normal 
to a specified plane is, 

7", = a , j n j ,  (1) 

where the cr 0 are components of the stress tensor (see 
Nye 1985, p. 82f). For computing and plotting it is 
always easier when the tensor is expressed in diagonal 
form. The components of the traction vector are then, 

{*i] [i ° :1[ nil 7", = 02 n~ . (2) 

0 03 n3 

Performing this multiplication gives expressions for the 
components of T in the three co-ordinate direction, 

Tl = nlcrl, T 2 =/1202,  T 3 --- n3or 3 (3) 

and the magnitude of T is, 

T = ~/T 2 + T~ + T 2. (4) 

The direction cosines of T are found by dividing each 
component by this magnitude. With these, the corre- 
sponding direction angles are then, 

al = arccos (TI/T), 
a2 = arccos (T2/T), (5) 
a3 = arccos (T3/T). 

The plane containing T and n intersects the specified 
plane to fix the direction of the shear. 

To illustrate the technique, the solution of the 
example problem given by Means (1989) will illustrate 
the method. The principal stress direction ol has a 
plunge and trend of 78*/337* and 03 has a plunge and 
trend of 11"/132 ° (see Fig. la). If (r 1 = 50 MPa, 02 = 30 
MPa and o3 = 20 MPa, what is the direction of the 
shearing component of the traction acting on the plane 
whose pole has a plunge and trend of 30*/250*? 

There are two closely related approaches to solving 
this problem graphically: (1) the attitudes may be 
retained in the original geographical co-ordinates, or (2) 
the principal stresses may be rotated into net co- 
ordinates. The first avoids the rotation, but requires the 
construction of small circles about inclined axes (Ragan 
1985, pp. 304-306), while the second utilizes the small 
circles printed on the net. There is not much difference 
in the amount of work involved, and the choice depends 
on one's facility with the plotting techniques. I prefer the 
second because it seems to display the elements of the 
problem more simply, but the basic method works for 
both. 

Adopting the convenient set of axes +x~ down, +x2 
north and +x3 east, the principal stress directions are 
rotated into coincidence with these (Fig. lb). In this 
frame, the attitude of the pole of the plane of interest is 
30"/201". 

The direction cosines of n can be obtained in either of 
two ways. The direction angles of the pole can be 
measured from the points representing the co-ordinate 
directions, or the plunge p and trend t of the pole can be 
converted using the formulae (el. Ragan 1985, p. 365), 

nl = sin p, n 2 = COS p COS t, n 3 = cosp sin t. (6) 

Construction 

(1) On the lower-hemisphere of a stereogram plot n 
representing the pole of the plane of interest, and add 
the great circle trace of the plane itself. 

(2) Convert the plunge and trend of n to direction 
cosines using equation (6), with the results, 

n] = 0.50000, n2 = -0.80850, n 3 = -0.31036. 
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Fig. 1. The shearing component  of  a traction on a generally-oriented plane, n = normal  to the plane, T -- traction vector, 
S = shear  direction on the plane and P = the direction of r = 0 on the plane: (a) e lements  of  the original problem (after 

Means 1989); (b) solution using rotation. 

(3) With equation (3) determine the components, 

T i = 25.00, T 2 = -24.26,  T 3 = -6.21. 

Then from equation (4), the magnitude of the traction 
vector is T = 35.38. 

(4) With equation (5), the direction angles of T are 
then, 

al  = 45.0% a2 = -46.7 °, a3 = -79.9 °. 

(5) Locate T at the intersections of small circles with 
radii equal to these direction angles drawn about each 
point representing a co-ordinate axis. 

(6) The great circle through T and n intersects the 
trace of the plane at the shear direction S, with an 
attitude of 560/053 ° . 

After rotating the elements of the problem back to 
their original orientations, this result is essentially the 
same as obtained by Means (1989). 

EXTENSIONS 

This simple analytical-graphical method may now be 
extended to other situations or to give additional useful 
information. 

(1) The magnitudes of the normal and shear com- 
ponents a and r are easily obtained from, 

a = T c o s 0  and r = T s i n 0 ,  (7) 

where 0 is the angle between n and T. 
(2) The shear direction may be calculated in two 

steps: 
(a) pole P of the plane containing the normal 

and traction vectors is found from the cross prod- 
uct P = n x T, and this also locates the direction of 
r = 0 on the plane; 

(b) shear direction S is then obtained from the 
cross product S = n × P. 

Another application of this method is to determine 
the direction of finite shear strain associated with a line 
in the deformed state. In diagonal form, the controlling 
equation is. 

,~111 ~i o o 

[;4z_;[ = ;~_; o 

tl 

(8) 

where 2~, ~.~ and ).~ are the principal reciprocal quadratic 
elongations, and (l~, l;_, l~) are the direction cosines of a 
line of interest. Normalizing the components in the 
resulting column matrix then gives the direction cosines 
of the normal to the strain ellipsoid. The plane contain- 
ing the line and the derived normal to the strain ellipsoid 
contains the shear direction, and the angle between 
these two directions is the angle of shear. 

In these applications a plot of the basic geometrical 
data needs only a single additional point to determine 
the shear direction. This point is obtained by a few 
simple calculations. With this result, the analysis may 
then be extended to a determination of several addi- 
tional parameters, and part or all of the process may be 
programmed for a computer solution. 

This method exploits a fundamental property com- 
mon to all symmetric second-rank tensors, including the 
stress, finite strain, infinitesimal strain and strain-rate 
tensors. For all of these the calculation yields the orien- 
tation of the radius-norrnal from the radius vector and 
the principal values. Nye (1985, p. 28) summarizes the 
geometric relationships between these two directions: 

Ifpi = Sqqj, the direction of p for a given q may 
be found by first drawing, parallel to q a radius 
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vector OP of the representation quadric, and 
then taking the normal to the quadric at P. 

This construction does not depend on the representation 
quadric of the tensor being an ellipsoid (see Nye 1985, 
pp. 28-30, for the treatment of hyperboloids and the 
case where the radius vector does not intersect the 
quadric at a real point). 
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